LFortran Intrinsic functions

Harshita Kalani

November 24, 2025

Contents

1 About Me

1.1 Contact Information,
1.2 Personal Background
1.3 Programming Background
1.4 Previous Contributions to LFortran
1.4.1 Merged
1.42 Open. e

The Project

2.1 Current compilation status

2.2 What are intrinsic functions?
2.2.1 Implementation of intrinsic Mod

2.3 Steps to implement an intrinsic function

Deliverables

3.1 Implementing intrinsic functions from scratch
3.2 Implementing Bessel functions
3.3 Handling coarray and atomic functions
3.4 Cleanup of runtime library
3.5 Enhancing Intrinsic Function Automation
3.6 Refactor ASRBuilder
3.7 Support intrinsic functions in fortran backend
3.8 Intrinsic function design improvement
3.9 Performance options for intrinsic functions
3.10 Miscellaneous Goals,

4 Timeline 22

4.1 GSoC Period 22
4.1.1 Community Bonding Period 22

4.1.2 Phasel 22

413 Phase2 23

4.2 Post-GSoC Periodo 24

5 Acknowledgements 24
6 References 24

1 About Me

1.1 Contact Information

University - Indian Institute of Technology, Jodhpur

Email IDs - kalani.1@iitj.ac.in, harshitakalani02@gmail.com
Github - harshitakalani

e Timezone - IST (UTC + 5:30)

1.2 Personal Background

[am a final year undergraduate pursuing BTech in the department of Com-
puter Science and Engineering at Indian Institute of Technology, Jodhpur.

I have completed following relevant courses in my academic curriculum in
past years: Computer Organization and Architecture, Computer Networks,
Theory of Computation, Digital design, Operating Systems, Software Engi-
neering, Object Oriented Analysis and Design, Data Structures and Algo-
rithms, Design and Analysis of Algorithms.

1.3 Programming Background

I utilize Ubuntu 22.04 as my preferred operating system, coupled with the
Visual Studio Code (VS Code) editor. I have strong background in Python
3.x, C++417 and Javascript. I have explored Kotlin Multiplatform, Flutter,

mailto:kalani.1@iitj.ac.in
mailto:harshitakalani02@gmail.com
https://github.com/harshitakalani

Django, ReactJS, REST-APIs and have some experience with HTML and
CSS during my undergraduate studies. A list of my ongoing and completed
work is as follows:

e Compiling SciPy packages with LFortran - At the beginning of
August 2023, LFortran implemented sufficient semantics and lowering
so that it could correctly compile and run SciPy’s minpack, obtaining
bit-for-bit identical results as GFortran. When testing other files at
random, many of them also compiled successfully. There were a few
features that needed to be implemented. I took this task as my Btech
project and with collaborative efforts, LFortran has achieved the capa-
bility to successfully compile 9 / 15 (60 %) SciPy packages, encompass-
ing amos, cdflib, specfun, mach (integrate), mach (special), minpack,
minpack2, fitpack, and quadpack. Also, a platform independent and
robust CMake based build system to integrate LFortran into SciPy
build is implemented. Notably, LFortran now passes all the rigorous
test suites designed by SciPy developers for these packages. This ac-
complishment signifies a pivotal milestone, as it empowers SciPy users
to potentially transition from GFortran to LFortran for these specific
packages, offering a viable alternative for enhanced compatibility and
performance in their scientific computing workflows.

e Kotlin Multiplatform (android and iOS) - This is my intern
project done during the summer of 2023 at Warner Bros Discovery
where I successfully onboarded the Playback Info Resolver(PIR) com-
ponent of the Player SDK into Kotlin Multiplatform and implemented
the shared library for both Android and iOS Platforms which contains
the Kotlin source code that can be transpiled into Swift, JavaScript
and C++, demonstrating the practicality of cross-platform develop-
ment. Here, PIR is the business logic to initiate the playback session
for a requested asset by an user on a specific device. I then demon-
strated a compelling proof of concept of Kotlin Multiplatform which
showcased the journey of developing, integrating and testing the PIR
in both Android and iOs platforms.

e Covid-19 Detection using chest X-Ray - The outbreak of COVID-
19 has led to a global health crisis, making early detection and diag-
nosis crucial for disease control and management. Medical imaging,

especially chest X-rays, has emerged as a potential tool for the early de-
tection of COVID-19. In this study, we proposed a deep learning-based
approach to detect COVID-19 using chest X-rays. Specifically, we em-
ployed VGG-19, EfficientNet B3, ResNET-50 models, and performed
in-depth analysis to detect COVID-19 infection using chest X-rays af-
ter lung segmentation using U-Net and dimensionality reduction using
PCA. Our approach achieved an accuracy of 96.4% on a pre-trained
U-Net model after lung segmentation.

e Optical Character Recognition Application - During this project,
I successfully led a team of developers in creating a pipeline that lever-
ages Optical Character Recognition (OCR) technology to extract text
from images. This pipeline can then convert the extracted text into
various formats like .txt, .mp3, and .csv. We seamlessly integrated this
pipeline into a mobile application, streamlining the process for users to
extract text from images using their smartphones. The app features a
simplified login system through Google authentication and allows users
to upload images from their gallery or camera effortlessly. Addition-
ally, to enhance accessibility, we included a text-to-speech feature that
converts the extracted text into audio, providing users with the option
to listen to the content instead of reading it manually.

More details about the same can be found on my GitHub profile: harshi-
takalani. In all of the above projects I have used git as my version control
system.

1.4 Previous Contributions to LFortran

Following is the list of Merge Requests that I have made in the past to the
Github repository of LFortran, PS: I have listed contributions from latest to
oldest, list order does not determine the difficulty of the PR.

1.4.1 Merged

e 13672: enh: Code cleanup for intrinsic functions

e !3668: Implement intrinsic index

https://github.com/harshitakalani
https://github.com/harshitakalani
https://github.com/lfortran/lfortran/pull/3672
https://github.com/lfortran/lfortran/pull/3668

13660: Implement intrinsic scan

13659: Implement intrinsic lgt, 1lt, lle and Ige

13656: Handle verify check in intrinsic_function pass

13647: Remove old implementation of ibits, count and sqrt
13621: Implement intrinsic verify

13600: Implement intrinsic selected char _kind

13578: Implement intrinsic char

13556: Implement Ifortran_ToLowerCase

13541: Implement intrinsic ibclr, ibset and btest and remove old imple-
mentation of the same

13534: Implement intrinsic not and remove old implementation of not,
nint, floor and ceiling

13533: Implement intrinsic iand, ior and ieor and remove their old
implementation

13522: Implement intrinsic blt, ble and bge
13474: Throw error if the first arg of intrinsic cmplx is absent
13463: Throw error for comparison of different types of operands

13411: Implement intrinsic precision and remove old implementations
of max, min and aimag

13393: Removed pure/Ifortran_intrinsic_trig.f90

13386: Implement intrinsic rshift

https://github.com/lfortran/lfortran/pull/3660
https://github.com/lfortran/lfortran/pull/3659
https://github.com/lfortran/lfortran/pull/3656
https://github.com/lfortran/lfortran/pull/3647
https://github.com/lfortran/lfortran/pull/3621
https://github.com/lfortran/lfortran/pull/3600
https://github.com/lfortran/lfortran/pull/3578
https://github.com/lfortran/lfortran/pull/3556
https://github.com/lfortran/lfortran/pull/3541
https://github.com/lfortran/lfortran/pull/3541
https://github.com/lfortran/lfortran/pull/3534
https://github.com/lfortran/lfortran/pull/3534
https://github.com/lfortran/lfortran/pull/3533
https://github.com/lfortran/lfortran/pull/3533
https://github.com/lfortran/lfortran/pull/3522
https://github.com/lfortran/lfortran/pull/3474
https://github.com/lfortran/lfortran/pull/3463
https://github.com/lfortran/lfortran/pull/3411
https://github.com/lfortran/lfortran/pull/3411
https://github.com/lfortran/lfortran/pull/3393
https://github.com/lfortran/lfortran/pull/3386

1.4.2 Open

e !3674: Implement len_trim and remove dead code
e !3703: Implement modulo and handle flip_sign pass

e !3635: Implement achar and remove old implementation of char

I currently have 108 merge requests at LFortran out of which 82 are merged,
16 closed and 10 opened. A comprehensive list of all my merge requests can
be found at: lfortran/lfortran/pulls

2 The Project

This project delves into the intricate landscape of intrinsic functions within
LFortran, evaluating their current status and proposing strategic enhance-
ments. To enhance efficiency, certain functions require migration from the
old runtime and compile-time libraries to become intrinsic functions, while
others need to be developed anew. Additionally, there are intrinsic functions
that fall outside the scope of this project; they will be flagged with an error
message indicating their non-implementation status. The methodology to
implement an intrinsic function from scratch is also elucidated, outlining a
structured approach to integrate new functionalities. Ideas related to design
improvements and enhancing performance has also been proposed.

2.1 Current compilation status

With the latest commit, LFortran supports a wide range of intrinsic func-
tions that are completely implemented and tested rigrously. The issue #492
is created to keep the track of all the intrinsic functions that are implemented
and the ones that need to be implemented to match the current GFortran
standards of intrinsic procedures. The variety of intrinsic functions cover
math, string, logical, complex, trigonometric, inverse trigonometric, array
intrinsics, intrinsic subroutines and many more. Additionally, certain func-
tions are implemented separately using the runtime library and APIs, while
others are implemented with the assistance of nodes.

https://github.com/lfortran/lfortran/pull/3674
https://github.com/lfortran/lfortran/pull/3703
https://github.com/lfortran/lfortran/pull/3635
https://github.com/lfortran/lfortran/pulls?q=is%3Amerged+is%3Apr+author%3AHarshitaKalani+
https://github.com/lfortran/lfortran/issues/492

2.2 What are intrinsic functions?

Intrinsic functions in Fortran are fundamental tools that perform specific op-
erations, each with its unique name and purpose. For instance, the ABS()
function calculates the absolute value of a number, while SQRT() computes
the square root. Understanding these functions involves knowing their names,
the number and types of arguments they accept, as well as the range of valid
argument values. For example, SQRT() requires a non-negative REAL argu-
ment to compute the square root accurately. Using these intrinsic functions
correctly enhances code clarity and functionality, ensuring robust and error-
free calculations.

Let’s delve into the concept of intrinsic functions by exploring an exam-
ple and understanding what LFortran manages during the implementation
of such functions.

2.2.1 Implementation of intrinsic Mod

The MOD intrinsic function in Fortran is a mathematical operation that
calculates the remainder when one integer is divided by another. The syn-
tax of the MOD function is MOD(I, J), where I and J are both integer or
real operands. The function returns the remainder of the division I/J. This
operation is particularly useful in scenarios where the precise remainder is
required, such as in cyclic or periodic computations. The MOD function
is crucial in modular arithmetic and applications involving repetitive pat-
terns or periodicity. Its utilization enhances code clarity and conciseness,
especially in mathematical and scientific computing, by providing a straight-
forward means to obtain the remainder of integer divisions within the Fortran
programming language.

The intrinsic MOD operation is represented in the Abstract Syntax Tree
(ASR) using the IntrinsicElementalFunction. Subsequently, within the in-
trinsic_function pass, a namespace denoted as MOD is established. This
namespace incorporates a function named wverify_args designed for validat-
ing the correct input argument types. Furthermore, an eval_Mod function
is implemented to facilitate compile-time evaluation of mod(i, j) under the
condition that both i and j are compile-time values.

Additionally, the functions create_Mod and instantiate_Mod are introduced.
In scenarios where the input types are integers, these functions execute in-
teger division of i by j, succeeded by integer multiplication with j, and con-
cluded with subtraction from i to derive the remainder. This remainder is
then designated as the result. Conversely, when the input types are real, a
series of operations ensued. Initially, real division is performed, followed by
the casting of the result to an integer. Subsequently, the truncated integer is
multiplied by j, and the outcome is subtracted from i to yield the remainder.
This comprehensive implementation ensures accurate handling of both inte-
ger and real types within the context of the MOD operation in the LFortran
compiler.

PS: The below given example is just for illustration purposes, syntax, seman-
tics might be incorrect.

function modi32i32(a, p) result(d)

integer (int32), intent(in) :: a, p
integer (int32) :: q
q = a/p

d = a - pxq

s end function

function modr32r32(i, j) result(d)
integer (real32), intent(int) :: i, j
integer (int32) :: g
q = (int32) (i / j)
d = a - (real32)(p) * (reald32)(q)
end function

Listing 1: mod.f90

2.3 Steps to implement an intrinsic function

LFortran allows us to follow a number of fixed steps in order to implement
an intrinsic function.

e The first step in implementing an intrinsic function is different for
elemental functions and other intrinsic functions. The step is auto-
mated for intrinsic elemental functions while it needs to be done man-
ually for the rest of the functions. In order to create an elemental
intrinsic, we define the argument types and the return type in the in-
trinsic_func_registry_util_gen.py file. This file contains a python script

which automatically generates two essential functions for the specified
intrinsic function, namely, create_<function_name> and verify_args.

The create_<function_name> function is responsible for creating the
ASR representation of the intrinsic function, while verify_args ensures
that the correct number of arguments and their types are provided,
ensuring adherence to function specifications.

The file has a number of functionalities added. It allows us to han-
dle optional arguments like "kind” which is available in a wide number
of intrinsic functions. Intrinisics with optional arguments other than
"kind” are currently handled manually in the ast_common _visitor.h file
as done for intrinsic selected real kind in #3438.

Currently, the wntrinsic_func_registry_util_gen.py file doesn’t support
the automatic creation of verify args and create_<function_name> for
intrinsic array functions, so that needs to be done manually. We cre-
ate a namespace in the intrinsic_array_function_registry.h file and then
write the verify_args and create_function for the particular intrinsic.

The second step involves specifying the name of the intrinsic, along
with the minimum and maximum number of arguments it can accept,
as well as the keywords for any necessary and optional arguments.
This information is added to the name2signature list, which is located
in the ast_common_visitor.h file. to ensure that the compiler recognizes
and processes the intrinsic function correctly, including its argument
requirements and usage specifications.

The third step involves creating a dedicated namespace and defining
eval_<function_name> and instantiate_<function_name> within
it. This is done in the intrinsic_functions.h file for the elemental in-
trinsic functions and intrinsic_array_function_registry.h file for array
intrinsic functions. This structured approach helps organize and en-
capsulate the implementation logic for each intrinsic function. Within
the namespace, we define eval_<function_name> to handle the compile-
time evaluation of the intrinsic function, processing arguments and
generating the corresponding ASR representation. Similarly, instan-
tiate_<function_name> is defined to manage the instantiation process,

https://github.com/lfortran/lfortran/pull/3438

including variable declarations, function calls, and ASR construction.

e The final step involves registering the intrinsic function in the intrin-
sic_function_registry.h file. We mention the name of the intrinsic in a
dictionary defined in this file that maps each intrinsic function to its
corresponding 1D, facilitating efficient lookup and management within
the LFortran compiler framework. There’s another dictionary defined
here which allows the efficient fetching of the intrinsic name in the
frontend.

Let’s understand the procedure of implementing an intrinsic function in LFor-
tran using an example to illustrate each step effectively.

The SQRT function is an elemental function in Fortran that calculates the
square root of a given argument X. It falls under the class of elemental func-
tions and follows the syntax RESULT = SQRT(X). The argument X must
have a type of REAL or COMPLEX, and the return value of the function is
also of type REAL or COMPLEX, depending on the type of X. Additionally,
the kind type parameter of the return value matches that of the argument
X.
I program test_sqrt
2 real(8) :: x = 2.0_8
complex :: z = (1.0, 2.0)
4 x = sqrt(x)
z = sqrt(z)
6 end program test_sqrt

Listing 2: Example of SQRT(X)

e The first step is to declare the following in intrinsic_func_registry_util_gen.py

file.
1 "Sqrt": [
2 {
3 "args": [("real",), ("complex",)],
4 "ret_type_arg_idx": O
T,

6])
Listing 3: Define return and arg types for sqrt

This on building generates a namespace sqrt with the verify_args and
the create_Sqrt function in the intrinsic_function_registry_util.h file.

10

V)

-~

namespace Sqrt {

static inline void verify_args (const ASR::
IntrinsicElementalFunction_t& x, diag::Diagnostics&
diagnostics) {
if (x.n_args == 1) {

ASRUtils::require_impl(x.m_overload_id == O,
"Overload Id for Sqrt expected to be 0, found " + std
::to_string(x.m_overload_id), x.base.base.loc,
diagnostics);

ASR::ttype_t *arg_typeO = ASRUtils::
type_get_past_const (ASRUtils::expr_type(x.m_args[0]));

ASRUtils::require_impl ((is_real (xarg_typeO))
[l (is_complex (*arg_type0)), "Unexpected args, Sqrt

expects (real) or (complex) as arguments", x.base.base
.loc, diagnostics);

}

else {

ASRUtils::require_impl (false, "Unexpected
number of args, Sqrt takes 1 arguments, found " + std
::to_string(x.n_args), x.base.base.loc, diagnostics);

}
}

static inline ASR::asr_t* create_Sqrt(Allocator& al,
const Location& loc, Vec<ASR::expr_t*>& args, diag::
Diagnostics& diag) {
if (args.size() == 1) {
ASR::ttype_t *arg_typeO = ASRUtils::
type_get_past_const (ASRUtils::expr_type (args[0]));
if (1 ((is_real (*xarg_type0)) || (is_complex (*
arg_type0)))) {
append_error (diag, "Unexpected args, Sqrt
expects (real) or (complex) as arguments", loc);
return nullptr;
b
X
else {
append_error (diag, "Unexpected number of args
, Sqrt takes 1 arguments, found " + std::to_string(
args.size()), loc);
return nullptr;

}
ASRUtils::ExprStmtDuplicator expr_duplicator(al);
expr_duplicator.allow_procedure_calls = true;

11

ASR::ttype_t* type_ = expr_duplicator.
duplicate_ttype (expr_type (args[0]));
ASR::ttype_t *return_type = type_;
ASR::expr_t *m_value = nullptr;
Vec<ASR::expr_t*> m_args; m_args.reserve(al, 1);
m_args .push_back(al, args[0]);
if (all_args_evaluated(m_args)) {
Vec<ASR::expr_t*> args_values; args_values.
reserve(al, 1);
args_values.push_back(al, expr_value(m_args
[01));
m_value = eval_Sqrt(al, loc, return_type,
args_values, diag);
}
return ASR::make_IntrinsicElementalFunction_t (al,
loc, static_cast<int64_t>(IntrinsicElementalFunctions
::Sqrt), m_args.p, m_args.n, O, return_type, m_value) ;
}
}

Listing 4: Namespace containing verify_args and create_Sqrt function

The verify_args function in LFortran’s ASR implementation serves as a
key validation mechanism for intrinsic functions. It verifies the correct
number of arguments and their types, ensuring adherence to function
specifications. For instance, when verifying the sqrt function, it checks
that the number of arguments is exactly one and that the argument
type is either real or complex. Additionally, for overloaded functions
like sqrt, it checks the overload ID to guarantee the correct function
variant is called. When discrepancies are detected, detailed error mes-
sages are generated using the diagnostics parameter, providing precise
feedback on argument count, types, and overload mismatches.

The create_Sqrt function in LFortran’s ASR (Abstract Syntax Repre-
sentation) system is designed to generate the ASR representation for
the sqrt intrinsic function. In case of invalid arguments, it appends
precise error messages to the diagnostics and returns nullptr. Assum-
ing valid arguments, the function proceeds to construct the ASR rep-
resentation for the sqrt function, including setting the return type,
initializing argument values, and evaluating the function if necessary.
Ultimately, the function creates an instance of the appropriate ASR

12

class representing the sqrt intrinsic function, adhering to LFortran’s
standards and conventions while ensuring the integrity of the ASR rep-
resentation.

Declare the name of the intrinsic function along with the minimum
and maximum number of arguments that it can take and the key-
words for the same in the name2signature list, which is located in the
ast_common_visitor.h file as follows:

{"sqrt", {IntrinsicSignature({"X"}, 1, 1)}},
Listing 5: SQRT node in AST

The following is the AST for the example we saw above for the sqrt
intrinsic.
(Assignment
0
X
(FuncCallOrArray
sqrt
(]
[CO

X
O
0)]
[]
[]
[]
)
O
)

Listing 6: FuncCallOrArray node for intrinsic SQRT in the AST

The FuncCallOrArray node shown in the AST is visited when we call
any intrinsic function, sqrt in this case. This function then calls in-
trinsic_as_node which checks if the function being called is an intrin-
sic function and accordingly calls the handle_intrinsic_node_args which
fetches the signature of the intrinsic function defined in the step 2 and
checks if the number of arguments provided matches the signature of
the function and fills the optional arguments with default values and
finally call the create_sqrt.

The following ASR is obtained accordingly and on looking at it we can
see that it is represented using IntrinsicElementalFunction node now.

13

10

11

(Assignment

(Var 2 x)
(IntrinsicElementalFunction
Sqrt
[(Var 2 x)]
0
(Real 8)
O
)
O

)

Listing 7: IntrinsicElementalFunnction node for intrinsic SQRT in the ASR

e Then we create a namespace sqrt and define eval _Sqrt and instanti-

ate_Sqrt in the intrinsic_function_registry.h file.

I namespace Sqrt {

2

3

static ASR::expr_t *eval_Sqrt(Allocator &al, const
Location &loc,
ASR::ttype_t* arg_type, Vec<ASR::expr_t*> &
args, diag::Diagnostics& /*diagx*/) {
ASRUtils:: ASRBuilder b(al, 1loc);
if (is_real (*arg_type)) {
double val = ASR::down_cast<ASR::
RealConstant_t >(expr_value (args [0]))->m_r;
return b.f(std::sqrt(val), arg_type);
} else {
std::complex<double> crv;
if (ASRUtils::extract_value(args[0], crv)) {
std::complex<double> val = std::sqrt(crv)
return ASRUtils::EXPR(ASR::
make_ComplexConstant_t (
al, loc, val.real(), val.imag(),

arg_type));
} else {
return nullptr;
}
}
}

static inline ASR::expr_t* instantiate_Sqrt(Allocator
&al, const Location &loc,

14

32

33
34

SymbolTable *scope, Vec<ASR::ttype_t*>&
arg_types, ASR::ttype_t *return_type,
Vec<ASR::call_arg_t >& new_args, int64_t
overload_id) {
ASR::ttype_t* arg_type = arg_types[0];
if (is_real(xarg_type)) {
return EXPR(ASR::make_RealSqrt_t(al, loc,
new_args [0] .m_value, return_type, nullptr
)
} else {
return UnaryIntrinsicFunction::
instantiate_functions(al, loc, scope,
"sqrt", arg_type, return_type, new_args,
overload_id) ;
3
X

} // namespace Sqrt

Listing 8: Namespace containing eval_Sqrt and instantiate_Sqrt function

The eval Sqrt function in LFortran’s ASR (Abstract Syntax Repre-
sentation) system handles the compile-time evaluation of a sqrt. It
calculates the square root of a real or complex argument and creates
an ASR instance with the computed result, showcasing the function’s
role in producing valid ASR representations of intrinsic function eval-
uations.

The instantiate_Sqrt function in the namespace Sqrt handles the instan-
tiation of the sqrt intrinsic function within LFortran’s ASR (Abstract
Syntax Representation) system. This function takes into account the
argument types, return type, and overload ID to generate the appro-
priate ASR representation for the sqrt function. Specifically, if the
argument type is real, it creates an ASR instance of RealSqrt_t with
the corresponding arguments. However, if the argument type is not
real, it delegates the instantiation process to the UnaryIntrinsicFunc-
tion::instantiate_functions method, which handles the instantiation for
unary intrinsic functions like sqrt. This structured approach ensures
the correct instantiation of the sqrt function within the LFortran en-
vironment, maintaining consistency and adherence to language specifi-
cations.

15

e Finally, register the function inside intrinsic_function_ registry.h file in
order to call it to the frontend. Adding tests would be a plus and
it helps checking if the implementation works perfectly and gives the
expected output.

3 Deliverables

This section offers an in-depth overview of the intrinsic functions and outlines
the approach I'll take to address them during the project.

3.1 Implementing intrinsic functions from scratch

I'll focus on implementing the pending intrinsic functions listed in the tracker:
#492. The initial step involves fully implementing all non-coarray and non-
atomic functions specified in the tracker. This includes functions like associ-
ated, spread eoshift, spacing, merge_bits and other intrinsics like the bessel
functions. Following this, I'll proceed to add comprehensive tests for these
implementations to ensure correctness and efficiency.

I will keep the tracker up-to-date with the intrinsic procedures, incorporating
new ones as they become relevant and marking the implemented intrinsics
accordingly. This tracker will be a comprehensive record of the GFortran
supported intrinsic procedures, ensuring that the project stays aligned with
the latest standards and functionalities.

There are some functions which are not present in the list of standard in-
trinsic procedures but are helpful for a compiler. One of the examples of
such a function is ToLowerCase implemented in LFortran which is kind of a
support function in order to do a case insensitive comparison of strings. We
can lowercase all the strings and then compare them in order to ignore the
case. This function has been implemented with the PR #3556. I'll add such
functions into the list and will implement them too.

3.2 Implementing Bessel functions

For the bessel functions, we currently use the code from external sources.
The implementation of most of them follows the same code, so we can create

16

https://github.com/lfortran/lfortran/issues/492
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gfortran/Intrinsic-Procedures.html
https://gcc.gnu.org/onlinedocs/gcc-13.2.0/gfortran/Intrinsic-Procedures.html
https://github.com/lfortran/lfortran/pull/3556

a helper function that facilitates these implementation, register it in ASR-
Builder and use that in the intrinsic_functions.h file. I'm also planning to
implement the complete function using ASR.

3.3 Handling coarray and atomic functions

For coarray and atomic functions mentioned in the tracker #492, I’ll prior-
itize providing clear and informative error messages indicating their lack of
implementation within the project scope. If feasible and time permits, I may
explore the possibility of implementing these functions, although they are
considered out of scope for the current project objectives. I'll ensure to up-
date the tracker regularly to reflect the progress and maintain transparency
throughout the implementation phase.

3.4 Cleanup of runtime library

We currently rely on BindC for system interfacing, but there’s a need to in-
troduce dedicated ASR nodes for tasks like managing time, handling file I/O,
and executing intrinsic math functions. This shift aims to make the runtime
library purely Fortran-based, eliminating the need for C calls. Additionally,
we may integrate ” LFortran builtin” functions to access specialized features,
ensuring compatibility across different compilers. With analysis of the LFor-
tran runtime library, we can categorize the files into distinct groups to better
understand their content and purpose within the project:

e Impure

— Ifortran_intrinsic_sin.f90: This file contains a pure Fortran im-
plementation of the sine function (sin), but it’s currently not uti-
lized.

— Ifortran_intrinsic_math.f90: Most functions in this file have
been ported to use the IntrinsicElementalFunction. My plan is to
finish porting all functions and then remove this file.

— Ifortran_intrinsic_bit.f90: This file includes various bit manipu-
lation functions, which have already been implemented using the
intrinsic_function_registry mechanism. As a result, this file has
been removed.

17

https://github.com/lfortran/lfortran/issues/492

e Pure

— lfortran_intrinsic_iso_c_binding.f90: Implements ISO_C_BINDING
module functions such as c_associated, c_loc, c_ptr, which are cur-
rently in use.

— lfortran_intrinsic_iso_fortran_env.f90: Defines constants and

functions related to the Fortran environment provided by the
ISO_FORTRAN_ENYV intrinsic module.

— Ifortran_intrinsic_ieee_arithmetic.f90: This file contains stubs
for IEEE arithmetic functions, which I plan to fully implement as
part of the project.

— lfortran_intrinsic_string.f90: Nearly completed cleaning up this
file with only a few intrinsics left. A pull request (#3674) is
opened, and I'll finalize it soon.

— Ifortran_intrinsic_math2.f90: Only one function, modulo, re-
mains in this file. A PR (#3703) has been opened, and I'll com-
plete it shortly.

— Ifortran_intrinsic_kind.f90: This file contained functions like
selected_real_kind, selected_int_kind, selected_char_kind which have
been implemented and hence this file has been removed.

— Ifortran_intrinsic_trig.f90: All the functions inside this file have
been shifted to the intrinsic functions and this file has been re-
moved too.

— Ifortran_intrinsic_math3.f90: All the functions inside this file
have been ported to ASR and this file is removed.

e Builtin

— Ifortran_intrinsic_builtin.f90: Includes various interfaces, some
of which are already implemented as intrinsics. I'll work on imple-
menting the remaining interfaces and remove this file afterward.

— Ifortran_intrinsic_optimization.f90: Contains implementations
of custom ”special functions” used for optimization. I'll transfer
these functions directly to ASR-;ASR and eliminate this file en-
tirely.

e Custom

18

https://github.com/lfortran/lfortran/pull/3674
https://github.com/lfortran/lfortran/pull/3703

— Ifortran_intrinsic_custom.f90: Contains the newunit function,
which also needs to be removed as part of the cleanup process.

Here is an issue to keep the track for the same: #3034

3.5 Enhancing Intrinsic Function Automation

With the Automation of intrinsic_function_* lists using
intrinsic_func_registry_util_gen.py, we have achieved significant automation
in managing intrinsic function lists using intrinsic_func_registry_util_gen.py.
This automation has significantly reduced manual work during the imple-
mentation of intrinsic functions. While the automation is comprehensive,
there are still areas for improvement to enhance robustness. For example,
adding verify conditions such as kind1==kind2 for intrinsics that support ar-
guments only of the same kind: #3574 can further strengthen the automation
process. Currently, the automation covers most aspects, except for specific
lists like INTRINSIC_NAME_CASE(Conjg), intrinsic_function_by_id_db, in-
trinsic_function_id_to_name, and intrinsic_function_by_name_db specified in
#3383 The goal is to automate the generation of these lists as well through
intrinsic_func_registry_util_gen.py, contributing to a more streamlined and
efficient workflow in managing intrinsic functions within the project.

3.6 Refactor ASRBuilder

I plan to conduct a refactoring of the ASR Builder to enhance its efficiency
and readability. One key aspect of this refactoring involves replacing numer-
ous macros with callable functions. For instance, instead of having separate
macros for converting integers of different sizes like i8(x), i16(x), and i32(x),
we can introduce a single function i_t(x, t) where t denotes the kind of inte-
ger, allowing for a more streamlined and consistent interface.

Additionally, we can improve the overall interface of the ASR Builder to
make it simpler and more concise. This includes identifying and eliminating
repetitive code patterns, enhancing code reusability, and ensuring that the
builder’s functionality is intuitive and easy to use.

19

https://github.com/lfortran/lfortran/issues/3034
https://github.com/lfortran/lfortran/issues/3574
https://github.com/lfortran/lfortran/issues/3383

3.7 Support intrinsic functions in fortran backend

One of the aims of this project is to add support for all the intrinsics in the
fortran backend. An issue #3416 is opened for it. I'll create a tracker for all
the intrinsics and will try to completely register them in the fortran backend.

3.8 Intrinsic function design improvement

Currently, the intrinsic functions are categorised into two categories: elemen-
tal and non-elemental. However, the standard splits all intrinsics into the a
number of classes such as atomic subroutine, collective subroutine, elemental
function, elemental subroutine, inquiry function, pure subroutine , impure
subroutine and transformational function.

This is explained in detail in the issue number #1658. In order to cover all
these classes, I'll focus on the plan described in this issue about creating four
major categories of intrinsic functions and they are: IntrinsicElemental-
Function, IntrinsicArrayFunction, IntrinsicImpureSubroutine and In-
trinsiclmpureFunction, where the IntrinsicImpureSubroutine and Intrin-
siclmpureFunction are all intrinsics that do not fit into one of the first three
categories.

For this, the first task would be to get rid of all frontend intrinsic mod-
ules which T’ll do as part of the cleanup of runtime library and ensure none
of those call into lfortran_intrinsics.c. Then will rename Ifortran_intrinsics.c
into lcompilers_runtime.c and focus on cleaning up lcompilers_runtime.c by
moving/lifting things into ASR passes.

3.9 Performance options for intrinsic functions

In the realm of Fortran, performance in numerical computing is paramount.
We categorize performance metrics into two key approaches: ”Accuracy
First, Performance Second” and ” Performance First, Accuracy Second.” The
former prioritizes achieving highly accurate results for every single or dou-
ble precision number, while the latter emphasizes obtaining optimal perfor-
mance.

One notable example of performance enhancement is the utilization of the

20

https://github.com/lfortran/lfortran/issues/3416
https://github.com/lfortran/lfortran/issues/1658

Modulo operation with the flip sign pass. This involves employing a pass
named "flip_sign,” which generates an Abstract Syntax Tree Representation
(ASR) that replaces flip sign operations with more efficient bit shifts.

Specifically, the transformation converts constructs like ”if (modulo(number,
2) == 1) x = X" into "x = xor(shiftl(int(number), 31), x)” for 32-bit
numbers, or 63 for 64-bit numbers. The detection of flip signs occurs by
examining a specific subtree within the ASR tree. This subtree should fea-
ture an If node as the parent, with the Compare attribute containing a call
to the modulo intrinsic function (with the second argument as 2) and an
IntegerConstant of 1. Additionally, the Statement attribute of the If node
should consist of a single Assignment statement, where the right-hand side
is a UnaryOp expression with the operand being the left-hand side.

To facilitate this detection process, the FlipSignVisitor employs attributes
that are set to true only when the specified conditions are met in sequence.

Following successful detection, the subsequent phase involves replacing the
flip sign subtree with a call to a generic procedure. This placeholder call
is backend-agnostic, with the actual implementation generated based on the
specified backend. Moreover, by utilizing the —fast flag, which optimizes func-
tions for performance, the code is compiled with optimized settings, leading
to improved overall performance.

Here is a PR which implements modulo function and also handles its op-
timization with the flip sign pass: #3703. I've planned to implement per-
formance enhancements for all possible intrinsic functions within LFortran,
aiming to significantly boost its computational efficiency.

3.10 Miscellaneous Goals

Some additional goals can be to include enhancing test coverage for intrinsic
functions and optimizing the performance of passes related to intrinsic func-
tions like "fast,” "flip_sign,” ”"fma,” etc., to improve their robustness and
efficiency. Also, if time permits, I'm planning to look for the asr to ¢, cpp
and julia backends too.

21

https://github.com/lfortran/lfortran/pull/3703

4 Timeline

In this section, I outline a tentative plan for incorporating the discussed fea-
tures from the previous section. This plan includes post-GSoC periods as
part of the timeline. It’s important to note that the list of intrinsic functions
is extensive, and strictly adhering to the proposed timeline may pose chal-
lenges. Therefore, there is a possibility of slight deviations from the projected
schedule, depending on the extent to which certain features are integrated
into the project.

4.1 GSoC Period

According to the official dates, the complete program can be divided into
three parts namely, Community Bonding Period, Phase-1 and Phase-
2. The details of each of these is discussed in the following subsections.

4.1.1 Community Bonding Period

During the period from May 1% to May 26", 2024, spanning 3.5 weeks, I
aim to finalize all intrinsic functions in the frontend, specifically targeting
the implementation of all intrinsics in F23, excluding coarrays and atomics
(although they will still be recognized, accompanied by a clear error message
indicating their lack of implementation). My primary objective during this
phase will be to efficiently list and implement these functions as quickly as
possible, marking a significant advancement in the project. Additionally, I
will actively collaborate with new contributors, maintain regular community
interactions, and facilitate discussions on innovative ideas and implementa-
tion strategies to enhance collaboration and progress.

4.1.2 Phase 1

This phase starts from 27¢* May, 2024 and ends at 12" July, 2024, consisting
of around 7 weeks. The weekly plan (tentative) for this duration is as
follows,

e In the first three weeks, my focus will be on the smooth transition of
implementing every intrinsic function using the intrinsic function reg-
istry. I will prioritize the cleanup of the Fortran runtime and the C run-
time library. This involves removing redundant functions and tailoring

22

the libraries to be backend-specific. Additionally, I will introduce ASR
nodes to represent tasks that the backend must directly implement, fur-
ther optimizing the compilation process and ensuring backend-specific
functionality is appropriately integrated. Given the current state of in-
trinsic functions in LFortran, there are numerous functions that require
implementation and fixing, so will get them done, write tests and clean
it up.

e Over the next three weeks, my focus will be on optimizing the perfor-
mance of intrinsic functions. Each numerical function will have two
implementations: one fast but less accurate, and one slower but highly
accurate. Our fast implementation will be directly integrated into ASR
(Abstract Syntax Representation), providing users with the flexibility
to choose between accuracy and speed.

e [have allocated the seventh week as a buffer week in my schedule. This
strategic decision allows me to address any missed deadlines without
feeling stressed or pressured.

4.1.3 Phase 2

During this phase, which spans from 12 July to 195 August 2024, lasting
around 6 weeks, I will first address any missed deadlines from phase 1 and
prioritize their resolution.

Over the next three weeks, I'll work upon enhancing the intrinsic function
automation, will improve upon already existing python script to generate
more robust code and add other functionalities mentioned above in detail.
I’ll also cover refactoring of the ASR Builder and supporting the intrinsic
functions in fortran backend within this period of time.

After this is done, I'll work on further improving the intrinsic function design
which focuses on the plan to categorise the intrinsic functions into a number
of categories as described in the plan above.

Finally, T will focus on identifying and fixing any issue with the intrinsic
functions, utilizing minimal code reproductions of errors and addressing them
based on function priority. This phase will also be the time to tackle miscel-
laneous features discovered during the implementation of intrinsic functions

23

in LFortran. If all listed intrinsic functions are successfully implemented, I'll
proceed with testing all of them with good examples and improving them
with nice error messages wherever required.

My goal is to maintain a work schedule equivalent to 40 hours per week,
and I am open to adjusting workloads between phases to ensure efficient goal
achievement.

4.2 Post-GSoC Period

After GSoC, my plan is to continue enhancing LFortran to ensure it is more
robust and efficient for users. One area I will prioritize is compiling the
remaining intrinsic functions related to co-arrays that are yet to be imple-
mented and will continue working on the optimization options. This effort
will contribute significantly to the overall usability and functionality of LFor-
tran.

5 Acknowledgements

I would like to thank Ondrej Certik for his continuous feedback on my Merge
Requests and teaching me how to tackle difficult issues while working for
LFortran. I extend my thank to Pranav Goswami, Thirumalai Shaktivel,
Ubaid Shaikh and other contributors at LFortran for resolving my queries,
reviewing my pull requests and suggesting better approaches.

6 References

Oracle Docs for Fortran

Stanford documentation for Fortran

Pennsylvania State University docs for Fortran

University of Toronto docs for Fortran

LLVM Language Reference Manual

24

https://docs.oracle.com/cd/E19957-01/805-4939/6j4m0vn7v/index.html
https://web.stanford.edu/class/me200c/
http://www.personal.psu.edu/jhm/f90/questions/common.html
https://www.cita.utoronto.ca/~merz/intel_f10b/main_for/mergedProjects/lref_for/source_files/rfcommon.htm
https://llvm.org/docs/LangRef.html

	About Me
	Contact Information
	Personal Background
	Programming Background
	Previous Contributions to LFortran
	Merged
	Open

	The Project
	Current compilation status
	What are intrinsic functions?
	Implementation of intrinsic Mod

	Steps to implement an intrinsic function

	Deliverables
	Implementing intrinsic functions from scratch
	Implementing Bessel functions
	Handling coarray and atomic functions
	Cleanup of runtime library
	Enhancing Intrinsic Function Automation
	Refactor ASRBuilder
	Support intrinsic functions in fortran backend
	Intrinsic function design improvement
	Performance options for intrinsic functions
	Miscellaneous Goals

	Timeline
	GSoC Period
	Community Bonding Period
	Phase 1
	Phase 2

	Post-GSoC Period

	Acknowledgements
	References

